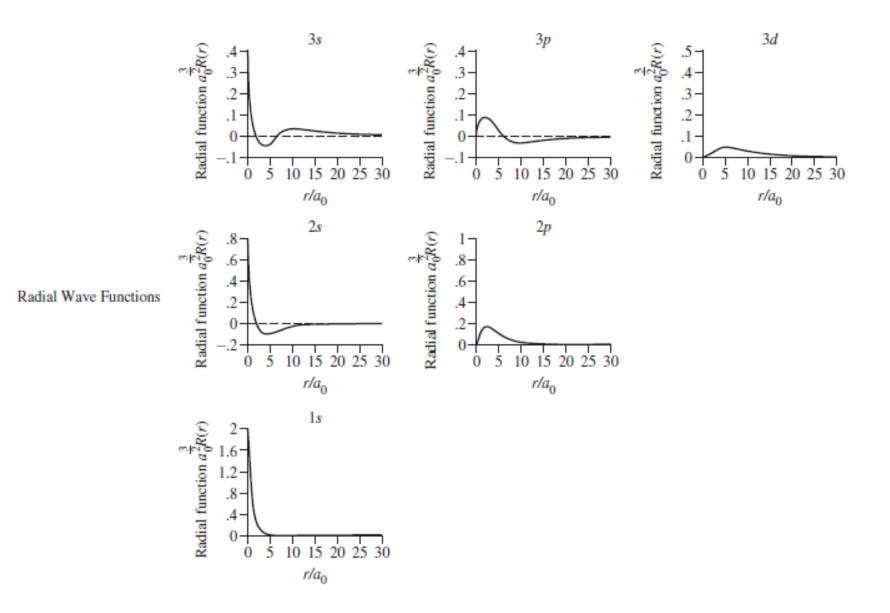
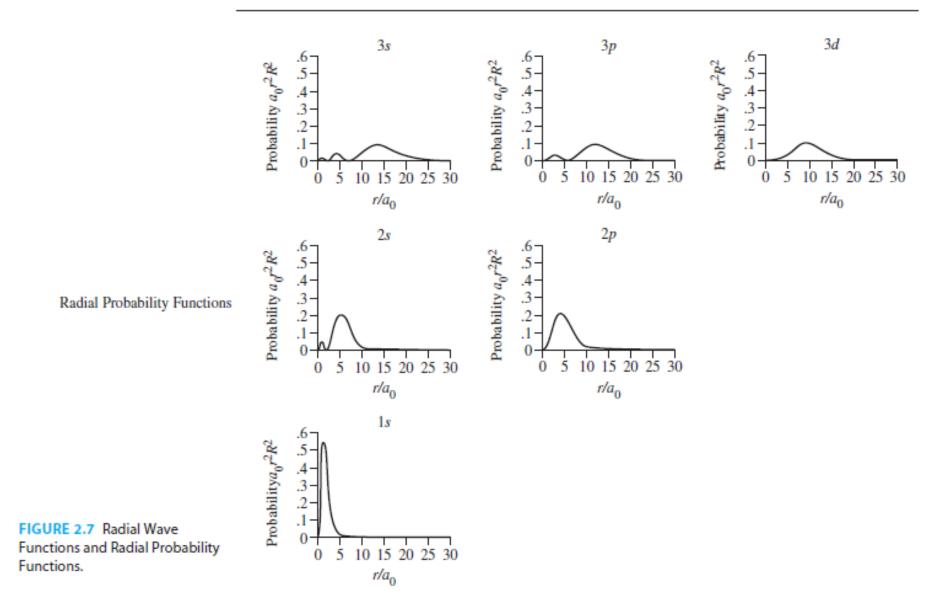

Symbol	Name	Values	Role
n	Principal	1, 2, 3,	Determines the major part of the energy
l	Angular momentum*	$0, 1, 2, \ldots, n-1$	Describes angular dependence and contributes to the energy
m _l	Magnetic	$0, \pm 1, \pm 2, \ldots, \pm l$	Describes orientation in space (angular momentum in the <i>z</i> direction)
m _s	Spin	$\pm \frac{1}{2}$	Describes orientation of the electron spin (magnetic moment) in space

Orbitals with different *l* values are known by the following labels, derived from early terms for different families of spectroscopic lines:

l	0	1	2	3	4	5,
Label	S	р	d	f	8	continuing alphabetically

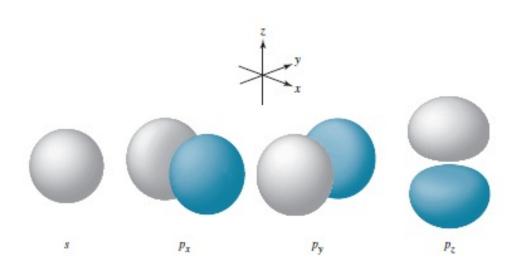

		Ang	jular Factors		Rea	l Wave Functions		
Rel	ated	to Angular	Momentum	Functions of θ	In Polar Coordinates	In Cartesian Coordinates	Shapes	Label
l	m_l	Φ	θ		$\Theta \Phi(\theta, \phi)$	$\Theta \Phi(x,y,z)$		
0(s)	0	$\frac{1}{\sqrt{2\pi}}$	$\frac{1}{\sqrt{2}}$	ž,	$\frac{1}{2\sqrt{\pi}}$	$\frac{1}{2\sqrt{\pi}}$	\bigcirc	5
1(<i>p</i>)	0	$\frac{1}{\sqrt{2\pi}}$	$\frac{\sqrt{6}}{2}\cos\theta$	В	$\frac{1}{2}\sqrt{\frac{3}{\pi}}\cos\theta$	$\frac{1}{2}\sqrt{\frac{3}{\pi}}\frac{z}{r}$	x x	<i>p</i> _z
		$\frac{1}{\sqrt{2\pi}}e^{i\phi}$	2		$\begin{cases} \frac{1}{2}\sqrt{\frac{3}{\pi}}\sin\theta\cos\phi\\ \frac{1}{2}\sqrt{\frac{3}{\pi}}\sin\theta\sin\phi \end{cases}$	$\frac{1}{2}\sqrt{\frac{3}{\pi}}\frac{x}{r}$	Å	<i>p</i> _x
	-1	$\frac{1}{\sqrt{2\pi}}e^{-i\phi}$	$\frac{\sqrt{3}}{2}\sin\theta$	J	$\frac{1}{2}\sqrt{\frac{3}{\pi}}\sin\theta\sin\phi$	$\frac{1}{2}\sqrt{\frac{3}{\pi}}\frac{y}{r}$	Þ	<i>p</i> _y
2(<i>d</i>)	0	$\frac{1}{\sqrt{2\pi}}$	$\frac{1}{2}\sqrt{\frac{5}{2}} (3\cos^2\theta - 1)$	}	$\frac{1}{4}\sqrt{\frac{5}{\pi}}(3\cos^2\theta-1)$	$\frac{1}{4}\sqrt{\frac{5}{\pi}}\frac{(2z^2-x^2-y^2)}{r^2}$	X	d_{z^2}
	+1	$rac{1}{\sqrt{2\pi}}e^{i\phi}$	$\frac{\sqrt{15}}{2}\cos\theta\sin\theta$	b	$\begin{cases} \frac{1}{2}\sqrt{\frac{15}{\pi}} \cos\theta\sin\theta\cos\phi\\ \frac{1}{2}\sqrt{\frac{15}{\pi}} \cos\theta\sin\theta\sin\phi \end{cases}$	$\frac{1}{2}\sqrt{\frac{15}{\pi}}\frac{xz}{r^2}$	×	d_{xz}
	-1	$\frac{1}{\sqrt{2\pi}}e^{-i\phi}$	$\frac{\sqrt{15}}{2}\cos\theta\sin\theta$		$\frac{1}{2}\sqrt{\frac{15}{\pi}}\cos\theta\sin\theta\sin\phi$	$\frac{1}{2}\sqrt{\frac{15}{\pi}}\frac{yz}{r^2}$	Å	d _{yz}
	+2	$\frac{1}{\sqrt{2\pi}}e^{2i\phi}$	$\frac{\sqrt{15}}{4} \sin^2 \theta$		$\begin{cases} \frac{1}{4}\sqrt{\frac{15}{\pi}}\sin^2\theta\cos 2\phi\\ \frac{1}{4}\sqrt{\frac{15}{\pi}}\sin^2\theta\sin 2\phi \end{cases}$	$\frac{1}{4}\sqrt{\frac{15}{\pi}}\frac{(x^2-y^2)}{r^2}$	- A	$d_{x^2-y^2}$
	-2	$\frac{1}{\sqrt{2\pi}}e^{-2iq}$	$\frac{1}{4} \frac{\sqrt{15}}{4} \sin^2 \theta$	Ì	$\int \frac{1}{4} \sqrt{\frac{15}{\pi}} \sin^2 \theta \sin 2\phi$	$\frac{1}{4}\sqrt{\frac{15}{\pi}}\frac{xy}{r^2}$	-Æ-	d _{xy}

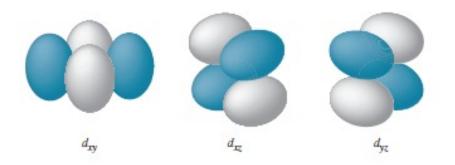

TABLE 2.3 Hydrogen Atom Wave Functions: Angular Functions

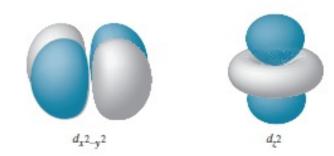
Source: Hydrogen Atom Wave Functions: Angular Functions, Physical Chemistry, 5th ed., Gordon Barrow (c) 1988. McGraw-Hill Companies, Inc.

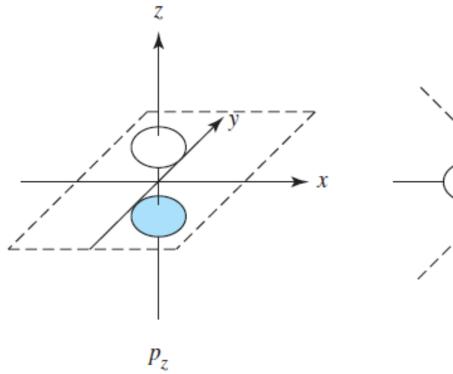
Radial Functions $R(r)$, with $\sigma = Zr/a_0$					
Orbital	n	1	<i>R</i> (<i>r</i>)		
15	1	0	$R_{1s} = 2 \left[\frac{Z}{a_0} \right]^{3/2} e^{-\sigma}$		
2s	2	0	$R_{2s} = 2 \left[\frac{Z}{2a_0} \right]^{3/2} (2 - \sigma) e^{-\sigma/2}$		
2 <i>p</i>		1	$R_{2p} = \frac{1}{\sqrt{3}} \left[\frac{Z}{2a_0} \right]^{3/2} \sigma e^{-\sigma/2}$		
35	3	0	$R_{3s} = \frac{2}{27} \left[\frac{Z}{3a_0} \right]^{3/2} (27 - 18\sigma + 2\sigma^2) e^{-\sigma/3}$		
3р		1	$R_{3p} = \frac{1}{81\sqrt{3}} \left[\frac{2Z}{a_0} \right]^{3/2} (6 - \sigma)\sigma \ e^{-\sigma/3}$		
3d		2	$R_{3d} = \frac{1}{81\sqrt{15}} \left[\frac{2Z}{a_0}\right]^{3/2} \sigma^2 e^{-\sigma/3}$		

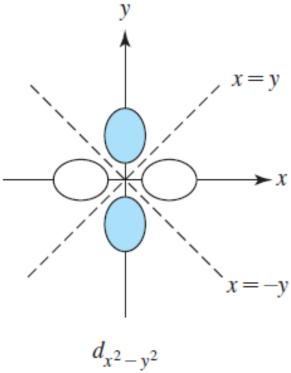
TABLE 2.4 Hydrogen Atom Wave Functions: Radial Functions

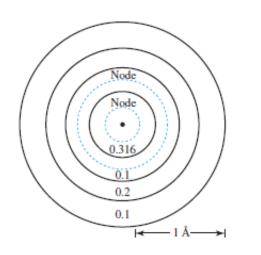


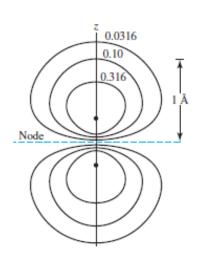


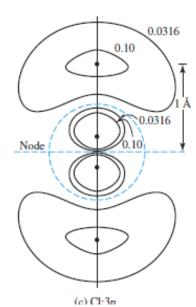

TABLE 2.5 Nodal Surfaces

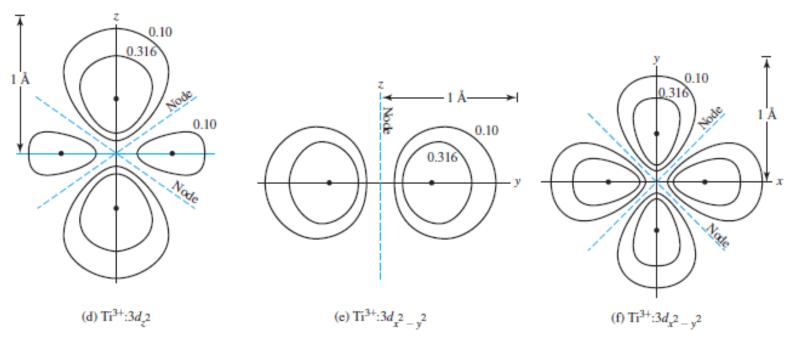

Angular Nodes [Y($ heta$, ϕ) = 0]				
Examples (number of angular nodes)				
s orbitals	0			
p orbitals	1 plane for each orbital			
d orbitals	2 planes for each orbital except d_{z^2}			
1 conical surface for d_{z^2}				


Radial Nodes [$R(r) = 0$]								
	Examples (number of radial nodes)							
1s	0	2p	0	3 <i>d</i>	0			
2 <i>s</i>	1	3 <i>p</i>	1	4d	1			
35	2	4p	2	5 <i>d</i>	2			









(a) Cl:3s

Copyright © 2014 Pearson Education, Inc.